

Comparative excitationemission dependence of the F_V/F_M ratio in model green algae and cyanobacterial strains.

> Stefano Santabarbara Photosynthetic Research Unit Institute of Biophysics, National Research Council

> > stefano.santabarbara@cnr.it

F_V/F_M a rapid and simple indicator of PSII quantum yield

F_V/F_M a rapid and simple indicator of PSII quantum yield

Caveats:

o emission is exclusively (or almost) from PSII

o quantum yields are independent on excitation and emission wavelengths.

F_V/**F**_M spectral dependence: emission

F_V/F_M spectral dependence: emission

o also limited spectral dependence of F_V/F_M

F_V/F_M spectral dependence: emission

o largely due to PSI emission

F_V/**F**_M spectral dependence: excitation

F_V/F_M spectral dependence: excitation

F_V/F_M spectral dependence: excitation

F_V/F_M: comparison with cyanobacteria

F_V/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803 o large spectral variation between F_0 and F_M

o the F_V/F_M ratio is largely dependent on BOTH the excitation and the emission wavelength

F_V/F_M spectral dependence: emission/excitation

o both F_0 and F_M spectra depend on the excitation wavelength

F_V/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803 o large spectral variation between F_0 and F_M

o both F_0 and F_M spectra depend on the excitation wavelength o the F_V/F_M ratio is largely dependent on BOTH the excitation and the emission wavelength

but

o the F_v spectra are (close to) excitation wavelength independent

F_V/F_M spectral dependence: how to rationalise it?

Considering thee independent emitting components o PSII-PBS super-complexes (showing variable fluorescence) o PSI(-PBS) super-complexes (no variable fluorescence) o an uncoupled population of PBS (no variable fluorescence)

F_V/F_M spectral dependence: how to rationalise it?

Considering thee independent emitting components o PSII-PBS super-complexes (showing variable fluorescence) o PSI(-PBS) super-complexes (no variable fluorescence) o an uncoupled population of PBS (no variable fluorescence)

$$F_{PSII(0,M)}(\lambda_{em},\lambda_{ex}) = \phi_{II,(0/M)}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})$$

$$F_{PSI}(\lambda_{em},\lambda_{ex}) = \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em})$$

$$F_{PBU}(\lambda_{em},\lambda_{ex}) = \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho$$
then
$$\begin{cases}F_{0}(\lambda_{em},\lambda_{ex}) = \phi_{II,0}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \\F_{M}(\lambda_{em},\lambda_{ex}) = \phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em})$$

F_V/F_M spectral dependence: how to rationalise it?

Considering thee independent emitting components o PSII-PBS super-complexes (showing variable fluorescence) o PSI(-PBS) super-complexes (no variable fluorescence) o an uncoupled population of PBS (no variable fluorescence)

$$F_{PSII(0,M)}(\lambda_{em},\lambda_{ex}) = \phi_{II,(0/M)}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})$$

$$F_{PSI}(\lambda_{em},\lambda_{ex}) = \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em})$$

$$F_{PBU}(\lambda_{em},\lambda_{ex}) = \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho$$

then

$$\begin{cases} F_0(\lambda_{em},\lambda_{ex}) = \phi_{II,0}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \\ F_M(\lambda_{em},\lambda_{ex}) = \phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \end{cases}$$

and

$$\begin{cases} F_{V}(\lambda_{em},\lambda_{ex}) = (\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) \\ F_{V}(\lambda_{em},\lambda_{ex}) = (\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) \\ \phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \end{cases}$$

F_V/F_M spectral dependence: how to rationalise it?

Considering thee independent emitting components o PSII-PBS super-complexes (showing variable fluorescence) o PSI(-PBS) super-complexes (no variable fluorescence) o an uncoupled population of PBS (no variable fluorescence)

$$F_{PSII(0,M)}(\lambda_{em},\lambda_{ex}) = \phi_{II,(0/M)}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})$$

$$F_{PSI}(\lambda_{em},\lambda_{ex}) = \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em})$$

$$F_{PBU}(\lambda_{em},\lambda_{ex}) = \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho$$

then

 $\begin{cases} F_0(\lambda_{em},\lambda_{ex}) = \phi_{II,0}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \\ F_M(\lambda_{em},\lambda_{ex}) = \phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \end{cases}$

and

$$\begin{cases} F_{V}(\lambda_{em},\lambda_{ex}) = (\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) \\ \frac{F_{V}}{F_{M}}(\lambda_{em},\lambda_{ex}) = \frac{(\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})}{\phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em})} \end{cases}$$

Decomposition of spectra into components

o highlights the different contribution of PSII, PSI and uncoupled PBS at each set of excitation/emission wavelengths

Decomposition of spectra into components

o highlights the different contribution of PSII, PSI and uncoupled PBS at each set of excitation/emission wavelengths
o allows to determine the relative absorption cross-section and emission bandwidth

$$\Phi_{PSII}^{Max} = 0.62$$

Decomposition of spectra into components

o highlights the different contribution of PSII, PSI and uncoupled PBS at each set of excitation/emission wavelengths
o allows to determine the relative absorption cross-section and emission bandwidth

o from which spectra can be simulated

o larger values (50% underestimated) for PSII max detection/Soret Excitation

o lower values (>80% underestimated) for PBS detection/PBS Excitation

o it can be corrected, knowing the super-complex absorption/emission cross-sections

o it can be corrected, knowing the super-complex absorption/emission cross-sections

o can be useful to distinguish different mechanisms/sites of quenching

Conclusion

o F_V/F_M perfectly fine but "surrounding conditions" need to be verified o It is necessary to be carefully choosing the measurements conditions

In cyanobacteria (*Synechocystis* 6803 and *Synechococcus* 7942) o the emission band-shape at RT depends on the excitation wavelength o the emission band-shape varies differently at F_0 with respect to F_M o the value of F_V/F_M depends on both the excitation and emission wavelengths

o the F_V spectra are excitation wavelength independent o this can be explained by a super-imposition of three emitters, PSI-PBS, PSII-PBS and an uncoupled PBS fraction (PBS_I)

As a result

o F_V/F_M is generally underestimated and need to be corrected to obtain meaningful information

o Similar bias in the fluorescence-based indicators affects also other parameters such as NPQ. It can leas to dramatic underestimation of this process.

o In *green algae* the issue are less relevant. Distortion from actual values less than 10%

Thank You For the Attention !

Thank You For the Attention !

Thank You For the Attention !

