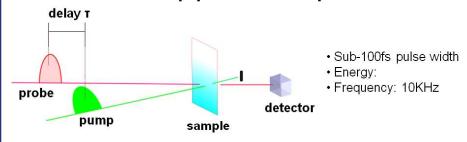
Excited state dynamics of Photosystem I core complex

<u>Vasilis Petropoulos</u>¹, Mattia Russo¹, Margherita Maiuri¹, Giulio Cerullo¹, Anna Paola Casazza², Stefano Santabarbara²

¹ Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

² Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy


Introduction

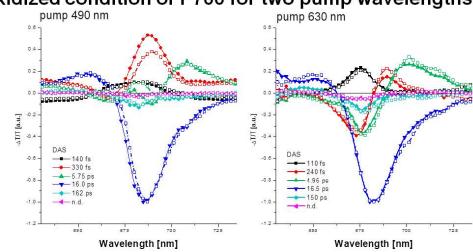
- Photosystem I (PS I) of oxygenic photosynthetic organisms is a membrane-bound pigment-protein complex that transport electrons from plastocyanin or cytochrome c6 to ferredoxin.
- The PSI-core complex include inner antennas, and the pigments of chlorophylls and carotenoids. Also the primary electron donor called P700 is originated in there, a chlorophyll dimer with an absorption maximum at 700 nm. In this complex the LHCl outer antenna is absenced.
- We analyze the pump-probe data performing a global fit
- (i) At 490nm pump wavelength, selectively excite the carotenoids
- (ii) At 630nm pump wavelength, unselectively excite the vibronic transition bands of the chlorophylls.

Pump-probe technique

Decay Associated Spectra (DAS)

$$\Delta \mathrm{A}(\lambda,t) = \sum_i (DAS)_i(\lambda) exp(-rac{t}{ au_i})$$

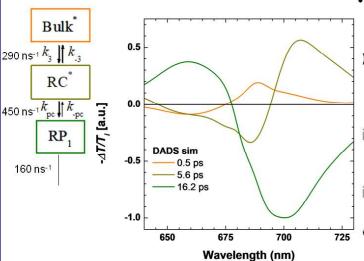
Compartmental Model


•
$$rac{dc_{(t)}}{dt} = \hat{K}c_{(t)}$$
 $c_{(t)} = [c_{1(t)} \dots c_{n_{comp}(t)}]^T$ Matrix of the decay rates

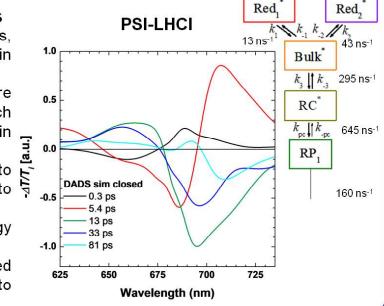
Eigenvalues of **K**

• The solution is: $c_{(t)} = \sum_i V_i exp(t \xi_i)$ Eigenvectors of K

Results


Oxidized condition of P700 for two pump wavelengths

full symbols: no FeCy, open symbols: +2mM FeCy


- The effect of FeCy is minimal at most of the investigated trace, this indicates that the reaction centre is 'closed' under our experimental conditions
- There is an intense dependency of the pump wavelength on the DAS at the fast components before 5ps.
- This intermediate 5ps- component has a transfer to 700nm region feature, irrespectively of the pump.
- Absence of the long lived red chlorophylls which originate in LHCI

PSI-core complex

Results Compartmental model analysis

- Similar rates and simulated lifetimes, but not identical, for the similar path in the two models.
- The lifetimes of 33 and 81ps are associated with the red species which originate in LHCl and are absenced in the PSI-core complex.
- The lifetime of **0.5ps** corresponds to the energy transfer from the bulk to the reaction centre.
- The 5.6ps component has an energy transfer character to the RC*
- The 16.2ps component is associated with the recombination of the RP to the ground state.

Conclusion

- In the dynamics, the FeCy has little effect overall which indicates that the P700 state is oxidized.
- The pump wavelength has an important dependency to the dynamics. The 5pscomponent has a transfer to 700nm region feature, irrespectively of the pump. This is coming out also from the compartmental model analysis.
- Absence of the long lived red chlorophylls above 710nm which originate in LHCI, so it turns out that the tail at the 700-715nm region on the DAS spectra comes from 'red' chlorophylls of inner antenna

References

- [1] E. Molotokaite, et al., J. Phys. Chem. B, 2017,121, 9816-9830
- [2] C. Slavov, et al., Biophysical Journal, 2008, 94, 3601-3612
- [3] M. G. Müller, et al., Biophysical Journal, 2003, 85, 3899-3922 [4] M. Byrdin, et al., Biophysical Journal, 2000, 79, 992-1007