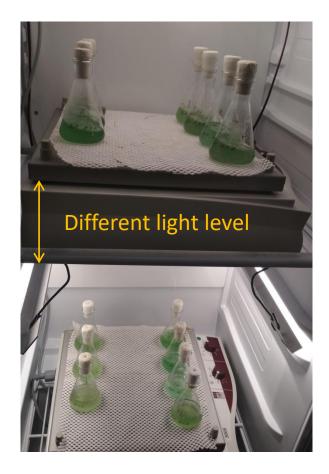


CYANOBACTERIA PLATFORM OPTIMISED FOR BIOPRODUCTION – CYAO

Pilot scale cultivation of engineered cyanobacteria for astaxanthin production

With help of Ing. Jiří Kopecký Ph.D. and Elizabeth Figueroa M.Sc.



Starting cultures


- We received 6 strains from which 3 were temperature inducible, thus called "Ti".
- When grown in a stock culture. Ti strains were cultivated in 18 °C room and those without this mutation in 28 °C cultivation room.
- Also grown on plates with antibiotics.

Choosing the most promissing strain.

- For the experiment the strains were inoculated from plate and after 3 dilutions they were placed into the incubator with temperature set to 36 °C.
- All the light conditions were continuous LED panels.
- Tested:
 - Different light intensities.
 - Different start of the culture.

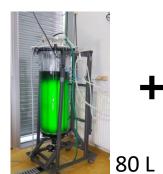
Comparison of the Astaxanthin production in testing cultivation

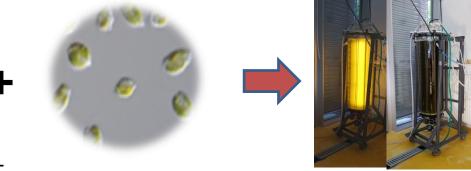
TiWZ vs. TiZW and 50 vs. 100 μE

50 μE/ Strain	D.W. [g.L ⁻¹]	Ret. Time [min.]	Compound	area	µg.ml⁻¹	%
TiZW	0.31	10.5	Asta	[480 nm] 4.3	0.017	0.0014
TiWZ	0.64	10.5	Asta	13.3	0.054	0.0021

- From this comparison TiWZ was chosen as the optimal candidate for Astaxanthin production, under 100 μE illumination.

100 μE/ Strain	D.W. [g.L ⁻¹]		Compound	Peak area [480 nm]	µg.ml-1	%	
TiZW	0.65	10.5	Asta	484.9	1.971	0.076	
TiWZ	0.63	10.5	Asta	875.3	3.558 🤇	0.14	D

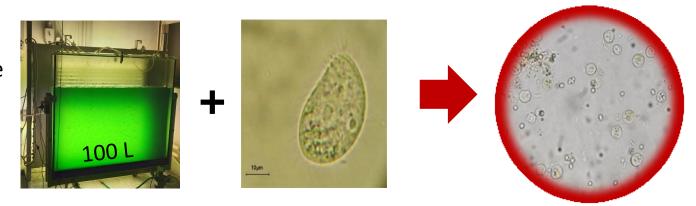



Upscaling of TiWZ

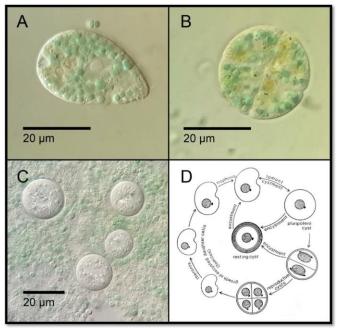
The culture was grown under standart conditions to reach volume like 5 L with optical density 0.3 and then transferred into bigger cultivator. At the start the culture had dry weight 0.13 g/L.

- It seemed to be easy. but:
 - Golden algae (Ochromonas danica)
 - protozoa (Colpoda steinii)

Ochromonas danica :



- Why?
 - The golden algae consume smaller organisms with exponenciall likeliness. The smaller the more probably will be eaten.


Protozoa contamination

protozoa: the ciliate Colpoda steinii

- It forms resting cysts.
- It can excyst fast when conditions become better.
- It is capable to clear a dense culture of Synechocystis sp. within 4-5 days.

Serious troubles with *Synechocystis salina* CCALA 192 culture scaling up to obtain biomass production.

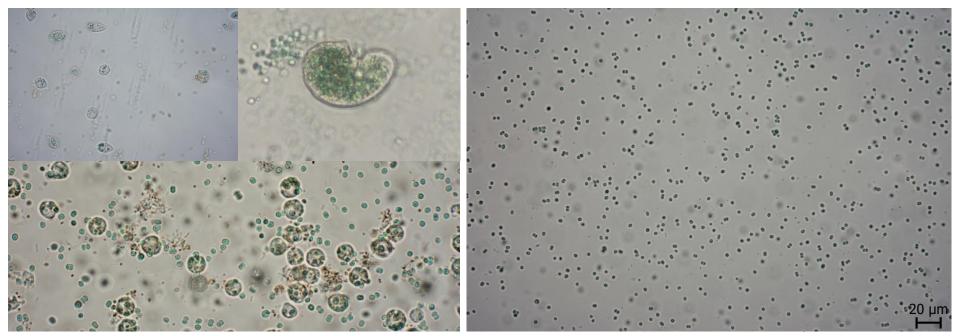
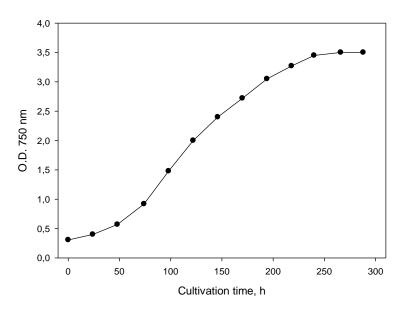
Source: (Troschl et al.. 2017).

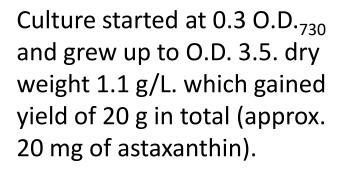
Tested ways of decontamination from *Colpoda steinii*

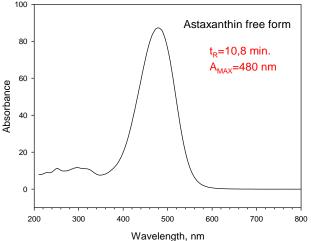
Table 2. Evaluation of different cultivating strategies against *Colpoda steinii* in large scale cultivation of Synechocystis salina CCALA192.

Cultivation strategy in the photobioreactor (flat panel – 100 L)	Outcome
Sanitizing with 70% ethanol solution	Culture crash 4–5 days after inoculation
Sanitizing with Dosyl 3 Plus solution	Culture crash 4–5 days after inoculation
Sanitizing with NaClO solution	Culture crash 4–5 days after inoculation
Partially anoxic conditions	No inhibition of Colpoda steinii. culture
	crash 4–5 days after inoculation
Use of filter combined with partially	Culture crash 5–6 days after inoculation
anoxic conditions	
High salinity (50 g/L NaCl)	Total inhibition of <i>Colpoda steinii</i> - Stable cultivation of <i>Synechocystis</i> CCALA192

How does high salinity affect Colpoda steinii in Synechocystis culture?

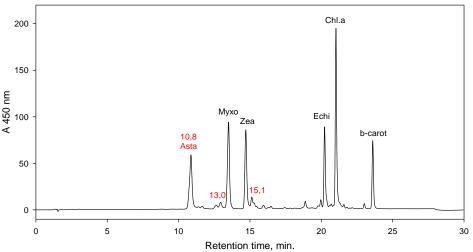




Fig. 1. Large scale cultivation of *Synechocystis* salina CCALA192 contaminated with *Colpoda* steinii (active mode).


Fig. 2. Large scale cultivation of *Synechocystis salina* CCALA192 after high salt treatment (50 g/L).

Solution of our problem

- Cultivation in 20 L incubator.
- Closed system



Pigments of TiWZ cultivated in 20 L.

- Apart of the main pigments common in all *Synechocystis* strains. there were detected:
- Myxoxantophyll (t_R=13.5 min.) ¹
- Zeaxanthin (t_R=14.6 min.)
- Echinenone (t_R=20.2 min.)
- Chlorophyll a (t_R=21.0 min.)
- β -carotene (t_R=23.6 min
- the free form of Astaxanthin eluting at $t_R = 10.8$ min
- two unknown peaks with characteristic spectra for secondary carotenoid (t_R=13.0 min. and t_R=15.1 min.). The content of the free form of Astaxanthin per dry biomass was 0.12%.

Salt test

 Because TiWZ is a fresh water culture, we didn't expect any tolerance to salt content in the medium.

Thank you for your attention

Thank to our colleagues: Ing. Jiří Kopecký Ph.D. Elizabeth Figueroa M.Sc.

Mé otázky

- Jak byl identifikován Astaxanthin v obou peacích? 10.7 a 12.7?
- Jaký objem má menší kultivátor. který mi v prezentaci nasdílela Elizabeth? Je to 80 L?
- Jak se zbavili zlatých řas?

Tested ways of decontamination from Colpoda steinii

Table 1. Evaluation of different cultivating strategies against *Colpoda steinii* (Troschl et al. 2017).

Cultivation strategy in the photobioreactor	Outcome
Sanitizing with 0.1% NaClO solution	Culture crash 4–5 days after inoculation
Sanitizing with 0.5% NH4 solution	Culture crash 4–5 days after inoculation
High salinity (20 g/L NaCl)	No inhibition of Colpoda steinii
Cultivating at pH 10	No inhibition of Colpoda steinii
High ammonium (200 mg/L NH4 ⁺ at pH 8.5)	No inhibition of Colpoda steinii
CO_2 asphyxiation (262 mg/L dissolved CO_2 at pH 6.35)	No inhibition of Coploda steinii
Partially anoxic conditions	Stable cultivation of Synechocystis CCALA192

Source: (Troschl et al.. 2017).