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General problem: Limit to productivity due to self-
shading:

« Phototrophic photosynthetic organisms use light to grow

« Upon growth light is absorbed by the culture, the inner layers
experience a “shaded” environment

« As the culture get dense, light intensity and light quality change and
become inhomogeneous
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Self Shading
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One strategy Is to act on PBR architecture
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Proposed solution in the CYAO Project:
controlled activation of Chl d biosynthesis

Chlorophyll a Chlorophyll d
(. C
AA ~
— S —
[ | (
| |1 Standard
I |
I N (
| Far Red

s | Enhanced

el

e
Standard Far Red-enhanced



Why Chlorophyll d?
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Limits to economic viability of micro-algae cultivation:

Even with an efficient PBR, the sole biomass for biofuels
(ethanol or diesel) has limited economic benefits (but has
ecological benefits!)

Second generation plants: combine biomass + added
value bio-products

Suggested solution in CYAO project: biosynthesis of the
carotenoid Astaxantin (ASX) in “model” cyanobacteria
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This was the proposed strategy:
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On-Paper work-flow: combining the two strategies
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Results on “light harvesting tailoring”

« An assignment for the Chl d-synthase gene was reported in the
literature: does not seem to work (not in our hands)
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« An assignment for the Chl d-synthase gene was reported in the
literature: does not seem to work (not in our hands)

« Bioinfomatic analysis to search for biosynthetic analogues (CAO-
family): not successful either

« Attempt at generating Chl d-KO by UV-irradiation: unsuccessful
(essential or internal DNA repair overcomes the mutations)

« Chl d-synthase still need to be really identified

« Alternative strategies



Results on “light harvesting tailoring”: alternative strategies

 Nature already does what we want: FaRLIP response
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Results on “light harvesting tailoring”: alternative strategies

« Other lessons’ from Nature: long-wavelength light harvesting in red
algae (LHC-tuning)
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Limit to light penetration: responses (diatoms)
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Red-Shifted PSIl antenna in Diatoms
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* Diatoms show a long-
wavelength adaptation too

Appearence of long wavelenght

emission (at RT) coupled to PSII

* Due to the synthesis of an LHC

Isoform, not to the synthesis of
different Chls

* Chl ared-states are typically
associated to PSl only: do red
states decrease the guantum
efficiency of PSII?

* probably, they do (in progress)
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Red-Shifted antenna (in general)
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Noteworthy: 750 nm is about the red-most in Nature (Spirulina platensis)



Red-Shifted antenna (in general)
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Red-Shifted antenna (in general)

What’ s the balance? (From predictions)

Bulk* <—k_> _ *PSllis more sensitive, emission forms
(Antenna) Kr centred at 730 are predicted to decrease
T ‘N efficiency largely
1] ks * The low-loss limit is predicted to be at
RC* around 715 nm: as found in nature!
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What'’s the “real” balance?
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A little bit of extra...

F,/F\: maximal yield of PSIl in cyanobacteria
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- Comparison with green algae:
* lower F,/F,, (down to 0.2-0.3)
 also from literature data
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Fluorescence (a.u.)

Fluorescence (a.u.)

F/F,, spectral dependence: emission/excitation
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In Synechocytis sp. PCC6803

* large spectral variation between
F,and Fy,

- the F/F,, ratio is largely
dependent on BOTH the excitation
and the emission wavelengths

Same in Synechococcus PCC7942



F,/F, spectral dependence: emission/excitation

Synechocystis sp.PCC6803
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In Synechocytis sp. PCC6803

* large spectral variation between
F,and Fy,

* both F,and F,, spectra depend on

~ the excitation wavelength

*the F,/F,, ratio is largely

_' | dependent on BOTH the excitation
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*the F,, spectra are (close to)
excitation wavelength independent



Decomposition of spectra into components (cyanobacteria)
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Decomposition of spectra into components (cyanobacteria)
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e highlights the different contributions of PSII, PSI and uncoupled
PBS at each set of excitation/emission wavelengths



Impact on other parameters: NPQ (cyanobacteria)
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* spectra simulated for
Increasing levels of
NPQ (0-4) for different
excitations for PSII-
PBS only!

* NPQ=1-F,,/F,,
computed after
convolving for 10 nm
interferential filters

* largely
underestimated!



Impact on other parameters estimation: NPQ
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e larger values (50%
underestimated) for PSII max
detection/Soret Excitation

e l[ower values (>80%
underestimated) for PBS
detection/PBS Excitation

* can be corrected, knowing the super-complexes absorption/emission

cross-sections

- can be useful to distinguish different mechanisms/sites of quenching



Thank You and

Impossible without the Fondazione

generous support from: CARIPLO

And the efforts of all researches involved






