

CYAO: Summary of Activities, Open Questions & Perspectives

Stefano Santabarbara Photosynthetic Research Unit National Research Council

http://www.cyaoproject.org

stefano.santabarbara@cnr.it

General problem: Limit to productivity due to selfshading:

- Phototrophic photosynthetic organisms use light to grow
- Upon growth light is absorbed by the culture, the inner layers experience a "shaded" environment
- As the culture get dense, light intensity and light quality change and become inhomogeneous

Self Shading

One strategy is to act on PBR architecture

Proposed solution in the CYAO Project: controlled activation of Chl *d* biosynthesis

Why Chlorophyll d?

Limits to economic viability of micro-algae cultivation:

- Even with an efficient PBR, the sole biomass for biofuels (ethanol or diesel) has limited economic benefits (but has ecological benefits!)
- Second generation plants: combine biomass + added value bio-products
- Suggested solution in CYAO project: biosynthesis of the carotenoid Astaxantin (ASX) in "model" cyanobacteria

This was the proposed strategy:

On-Paper work-flow: combining the two strategies

 An assignment for the Chl *d*-synthase gene was reported in the literature: does not seem to work (not in our hands)

- An assignment for the ChI *d*-synthase gene was reported in the literature: does not seem to work (not in our hands)
- Bioinfomatic analysis to search for biosynthetic analogues (CAOfamily): not successful either

- An assignment for the ChI *d*-synthase gene was reported in the literature: does not seem to work (not in our hands)
- Bioinfomatic analysis to search for biosynthetic analogues (CAOfamily): not successful either
- Attempt at generating ChI *d-KO* by UV-irradiation: unsuccessful (essential or internal DNA repair overcomes the mutations)
- Chl d-synthase still need to be really identified

- An assignment for the ChI *d*-synthase gene was reported in the literature: does not seem to work (not in our hands)
- Bioinfomatic analysis to search for biosynthetic analogues (CAOfamily): not successful either
- Attempt at generating ChI *d-KO* by UV-irradiation: unsuccessful (essential or internal DNA repair overcomes the mutations)
- Chl d-synthase still need to be really identified
- Alternative strategies

Results on "light harvesting tailoring": alternative strategies

Nature already does what we want: FaRLIP response

Results on "light harvesting tailoring": alternative strategies

 Other lessons' from Nature: long-wavelength light harvesting in red algae (LHC-tuning)

Self-Shading in P. tricornutum

Exactly the same issue, in the Far Red-Near IR as for other unicellular algae (true also for any vegetation layer)

Limit to light penetration: responses (diatoms)

 Diatoms show a longwavelength adaptation too Appearence of long wavelenght emission (at **RT) coupled to PSII** Due to the synthesis of an LHC isoform, not to the synthesis of different Chls Chl a red-states are typically associated to PSI only: do red states decrease the quantum efficiency of PSII?

Red-Shifted PSII antenna in Diatoms

- Diatoms show a longwavelength adaptation too
 Appearence of long wavelenght emission (at RT) coupled to PSII
 Due to the synthesis of an LHC isoform, not to the synthesis of different ChIs
 ChI a red-states are typically
- Chi a red-states are typically associated to PSI only: do red states decrease the quantum efficiency of PSII?
 probably, they do (in progress)

This parameter is (inversely) proportional to the Quantum yield of photon-conversion

Red-Shifted antenna (in general)

Noteworthy: 750 nm is about the red-most in Nature (*Spirulina platensis*)

Red-Shifted antenna (in general)

Red-Shifted antenna (in general)

What's the "real" balance?

• How red can the antenna be pushed before quantum efficiency will drop significantly?

 Can that be compensated by shifting the energy of RC?

• If so how much energy loss can be afforded to sustain electron transfer?

Chl Z_n

A little bit of extra...

 F_V/F_M : maximal yield of PSII in cyanobacteria

F_v/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803 • large spectral variation between F_0 and F_M

• the F_V/F_M ratio is largely dependent on BOTH the excitation and the emission wavelengths

Same in Synechococcus PCC7942

F_V/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803

- large spectral variation between F_0 and F_M
- both F_0 and F_M spectra depend on the excitation wavelength • the F_V/F_M ratio is largely dependent on BOTH the excitation and the emission wavelengths

but

the F_v spectra are (close to)
 excitation wavelength independent

Decomposition of spectra into components (cyanobacteria)

Decomposition of spectra into components (cyanobacteria)

 highlights the different contributions of PSII, PSI and uncoupled PBS at each set of excitation/emission wavelengths

Impact on other parameters: NPQ (cyanobacteria)

 spectra simulated for increasing levels of NPQ (0-4) for different excitations for PSII-PBS only!
 NPQ=1-F_M/F_M'

computed after convolving for 10 nm interferential filters

 largely underestimated!

Impact on other parameters estimation: NPQ

 larger values (50% underestimated) for PSII max detection/Soret Excitation

 lower values (>80% underestimated) for PBS detection/PBS Excitation

- can be corrected, knowing the super-complexes absorption/emission cross-sections
- can be useful to distinguish different mechanisms/sites of quenching

Thank You and...

Impossible without the Fondazione generous support from: CARIPLO

And the efforts of all researches involved

