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General problem: Limit to productivity due to self-

shading: 

• Phototrophic photosynthetic organisms use light to grow 

• Upon growth light is absorbed by the culture, the inner layers 

experience a “shaded” environment 

• As the culture get dense, light intensity and light quality change and 

become inhomogeneous 

 



Self Shading 

Sunlight 

Culture-shaded 

Culture-shaded light:  

• Far Red enriched 

• Low Intensity (standard) 
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One strategy is to act on PBR architecture 

open ponds 

closed systems 



Proposed solution in the CYAO Project:  

controlled activation of Chl d biosynthesis 

Chlorophyll a                                     Chlorophyll d 

Standard Far Red-enhanced 
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Enhanced 



Why Chlorophyll d? 

Chlorophyll a                                     Chlorophyll d 

Constitutive.  
Both PSI & PSII 
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Limits to economic viability of micro-algae cultivation: 

• Even with an efficient PBR, the sole biomass for biofuels 

(ethanol or diesel) has limited economic benefits (but has 

ecological benefits!)  

• Second generation plants: combine biomass + added 

value bio-products 

• Suggested solution in CYAO project: biosynthesis of the 

carotenoid Astaxantin (ASX) in “model” cyanobacteria 

 

Asx Biosynthetic

Pathway

Figure 1



This was the proposed strategy: 

Asx Biosynthetic 

Pathway 

Talks by 

Barbara, 

Borbora/Ondrej 
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On-Paper work-flow: combining the two strategies 



Results on “light harvesting tailoring” 

• An assignment for the Chl d-synthase gene was reported in the 

literature: does not seem to work (not in our hands)   
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• Alternative strategies 

 



Results on “light harvesting tailoring”: alternative strategies 

• Nature already does what we want: FaRLIP response 

 

This was very 

preliminar at the start 

of the project, now 

many more info. 

(Paola Talk)  

White Light 

Grown 

Far-Red (750 nm) 

Grown 

Chlorophyll a                                       Chlorophyll f 



Results on “light harvesting tailoring”: alternative strategies 

• Other lessons’ from Nature: long-wavelength light harvesting in red 

algae (LHC-tuning) 
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Self-Shading in P. tricornutum 

 

Exactly the same issue, in the Far Red-Near IR 

 as for other unicellular algae (true also for any  

vegetation layer)  



684 nm 

684 nm 

715 nm 

684 nm 715 nm 

• Diatoms show a long-

wavelength adaptation too 

•Appearence of long 

wavelenght emission (at 

RT) coupled to PSII 

• Due to the synthesis of 

an LHC isoform, not to the 

synthesis of different Chls  

• Chl a red-states are 

typically associated to PSI 

only: do red states 

decrease the quantum 

efficiency of  PSII? 

Limit to light penetration: responses (diatoms) 



Red-Shifted PSII antenna in Diatoms 

• Diatoms show a long-

wavelength adaptation too 

•Appearence of long wavelenght 

emission (at RT) coupled to PSII 

• Due to the synthesis of an LHC 

isoform, not to the synthesis of 

different Chls  

• Chl a red-states are typically 

associated to PSI only: do red 

states decrease the quantum 

efficiency of  PSII? 

• probably, they do (in progress)  

200

400

600

800

1000

1200

200

400

600

800

1000

1200

650 700 750 800

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

non

shaded

F
M

F
0

F
M

F
0

F
0

 

F
lu

ro
e

s
c

e
n

c
e

 (
a

.u
.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 A
i  (a

.u
.)

 

 

 24 ± 6 ps

 82 ± 8 ps

 285 ± 35 ps

 585 ± 25 ns

 1.0 ± 0.2 ns

 2.0  ± 0.2 ns

625 650 675 700 725 750 775 800

0.0

0.2

0.4

0.6

0.8

1.0

F
lu

ro
e

s
c

e
n

c
e

 (
a

.u
.)

Wavelength (nm)

675 700 725 750

0.0

0.5

1.0

1.5

2.0

2.5

3.0 11 ± 6 ps

 80 ± 10 ps

 290 ± 30 ps

 590 ± 20 ns

 1.0 ± 0.1 ns

 2..5 ± 0.2 ns

A
i  (a

.u
.)

 

Wavelength (nm)


a

v  (p
s

)

 


a

v  (p
s

)

 

80 K
 

This parameter is (inversely) 

proportional to the Quantum yield of 

photon-conversion 



Red-Shifted antenna (in general)  
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What’ s the balance? From predictions 

• PSI is quite robust, but emission 

forms centred at 750 nm start to be 

limiting 

 

Noteworthy: 750 nm is about the red-most in Nature (Spirulina platensis) 
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What’ s the balance? From predictions 

• PSI is quite robust, but emission 

forms centred at 750 nm start to be 

limiting 

• PSII is more sensitive, emission forms 

centred at 730 nm are predicted to 

decrease efficiency largely 
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What’ s the balance? (From predictions) 

•PSII is more sensitive, emission forms 

centred at 730 are predicted to decrease 

efficiency largely 

• The low-loss limit is predicted to be at 

around 715 nm: as found in nature! 



What’s the “real” balance? 
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• How red can the antenna be 

pushed before quantum 

efficiency will drop 

significantly? 

 

• Can that be compensated by 

shifting the energy of RC? 

 

• If  so how much energy loss 

can be afforded to sustain 

electron transfer? 
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A little bit of extra…  

- Comparison with green algae: 

• lower FV/FM (down to 0.2-0.3) 

• also from literature data 
 
 
 
 

How comes?  

 

 

 

 

Is it not valid? 
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FV/FM spectral dependence: emission/excitation 

In Synechocytis sp. PCC6803 

• large spectral variation between 

F0 and FM  

• the FV/FM  ratio is largely 

dependent on BOTH the excitation 

and the emission wavelengths 
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FV/FM spectral dependence: emission/excitation 

In Synechocytis sp. PCC6803 

• large spectral variation between 

F0 and FM  

• both F0 and FM spectra depend on 

the excitation wavelength 

• the FV/FM  ratio is largely 

dependent on BOTH the excitation 

and the emission wavelengths 

 

but 

 

• the FV spectra are (close to) 

excitation wavelength independent 
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Decomposition of spectra into components (cyanobacteria) 

• highlights the different contributions of PSII, PSI and uncoupled 

PBS at each set of excitation/emission wavelengths  
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Impact on other parameters: NPQ (cyanobacteria) 
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• spectra simulated for 

increasing levels of 

NPQ (0-4) for different 

excitations for PSII-

PBS only! 

• NPQ=1-FM/FM’ 

computed after 

convolving for 10 nm 

interferential filters 

 

• largely 

underestimated! 



Impact on other parameters estimation: NPQ 

• larger values (50% 

underestimated) for PSII max 

detection/Soret Excitation 
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• lower values (>80% 

underestimated) for PBS 

detection/PBS Excitation 

• can be corrected, knowing the super-complexes absorption/emission 

cross-sections  

• can be useful to distinguish different mechanisms/sites of quenching 
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Impossible without the  
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