Comparative excitationemission dependence of the F_V/F_M ratio in model green algae and cyanobacterial strains.

Stefano Santabarbara
Centre for Fundamental
Research in Photosynthesis/
Photosynthetic Research Unit
National Research Council

stefano.santabarbara@cnr.it

F_V/F_M a rapid and simple indicator of PSII quantum yield

Caveats:

- o emission is exclusively (or almost) from PSII
- o quantum yields are independent on excitation and emission wavelengths.

$F_{\rm V}/F_{\rm M}$ spectral dependence: emission and excitation

- o limited spectra variation between F_0 and F_M
- o also limited spectral dependence of F_V/F_M

F_V/F_M spectral dependence: emission

- o limited spectra variation between F_0 and F_M
- o also limited spectral dependence of F_V/F_M
- o largely due to PSI emission

F_V/F_M spectral dependence: excitation

For green algae (same in *C. reinhardtii*)

- very limited excitation wavelength dependence
- o limited spectra variation between F_0 and F_M
- o limited spectral dependence of F_V/F_M (due to PSI emission)

$$\frac{F_V}{F_M} \simeq \Phi_{PSII}^{Max} = \frac{K_{PC}}{\sum_i k_i + K_{PC}}$$

$$\frac{F_{V}}{F_{M}}(\lambda_{em}) \simeq \frac{(\phi_{m} - \phi_{m}) \cdot \rho_{II}(\lambda_{em})}{\phi_{m} \cdot \rho_{II}(\lambda_{em}) + \phi_{i} \cdot \rho_{I}(\lambda_{em})}$$

F_V/F_M : comparison with cyanobacteria

comparison:

- o lower F_V/F_M (down to 0.2-0.3)
- o also from literature data

How comes? Is

$$\frac{F_V}{F_M} \simeq \Phi_{PSII}^{Max} = \frac{K_{PC}}{\sum_i k_i + K_{PC}}$$

not valid?

F_V/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803

o large spectral variation between F_0 and F_M

o the F_V/F_M ratio is largely dependent on **both** the excitation and the emission wavelength

F_V/F_M spectral dependence: emission/excitation

In Synechocytis sp. PCC6803 & Synechococcus sp. PCC7942

- o large spectral variation between F_0 and F_M
- o both F_0 and F_M spectra depend on the excitation wavelength
- o the $F_{\rm V}/F_{\rm M}$ ratio is largely dependent on both the excitation and the emission wavelength
- o the F_V spectra are (close to) excitation wavelength independent

F_V/F_M spectral dependence: how to rationalise it?

Considering thee independent emitting components

- PSII-PBS super-complexes (showing variable fluorescence)
- PSI(-PBS) super-complexes (no variable fluorescence)
- o an uncoupled population of PBS (no variable fluorescence)

$$F_{PSII(0,M)}(\lambda_{em}, \lambda_{ex}) = \phi_{II,(0/M)}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})$$

$$F_{PSI}(\lambda_{em}, \lambda_{ex}) = \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em})$$

$$F_{PBU}(\lambda_{em}, \lambda_{ex}) = \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho$$

then

$$\begin{cases} F_0(\lambda_{em}, \lambda_{ex}) = \phi_{II,0}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \\ F_M(\lambda_{em}, \lambda_{ex}) = \phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_I\sigma_I(\lambda_{ex})\rho_I(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em}) \end{cases}$$

and

$$\begin{cases} F_{V}(\lambda_{em}, \lambda_{ex}) = (\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) \\ \frac{F_{V}}{F_{M}}(\lambda_{em}, \lambda_{ex}) = \frac{(\phi_{II,M} - \phi_{II,0})\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em})}{\phi_{II,M}\sigma_{II}(\lambda_{ex})\rho_{II}(\lambda_{em}) + \phi_{I}\sigma_{I}(\lambda_{ex})\rho_{I}(\lambda_{em}) + \phi_{PBU}\sigma_{PBU}(\lambda_{ex})\rho_{PBU}(\lambda_{em})} \end{cases}$$

Decomposition of spectra into components (cyanobacteria)

- o highlights the different contribution of PSII, PSI and uncoupled PBS at each set of excitation/emission wavelengths
- o allows to determine the relative absorption cross-section and emission bandwidth
- o from which spectra can be simulated

Decomposition of spectra into components (green algae)

- o more homogeneous contribution of PSII, PSI and uncoupled antenna almost excitation-wavelength independent
- o allows to determine the relative absorption cross-section and emission bandwidth

 $\Phi_{PSII}^{Max} = 0.725$

Impact on other parameters estimation: NPQ (green algae)

Impact on other parameters estimation: NPQ (green algae)

- o some underestimation, particularly when nonphotochemical quenching is rather large (i.e >2.5-3)
- o lowest deviations when monitoring PSII maximal emission (~680 nm) and preferential excitation (~475 nm)
- o lowest estimated (up to ~50% underestimated) at wavelengths where PSI emits the most

Impact on other parameters estimation: NPQ (cyanobacteria)

- spectra simulated for increasing levels of NPQ (0-4) for different excitations for PSII-PBS only!
- o NPQ=1-F_M/F_M' computed after convolving for 10 nm interferential
- o largely underestimated!

Impact on other parameters estimation: NPQ (Cyanobacteria)

- o sensible underestimations at most excitation/emission conditions
- o larger values (50% underestimated) for PSII max detection/Soret Excitation
- o the most severe bias, and the lower values simulated (>80% underestimated) are for PBS detection/PBS Excitation

o it can be corrected, knowing the super-complex absorption/emission crosssections

Direct improvement by multiple-wavelength detection

Conclusion

- o F_V/F_M perfectly fine but "surrounding conditions" need to be verified
- o It is necessary to be carefully choosing the measurements conditions

In cyanobacteria (Synechocystis 6803 and Synechococcus 7942)

- o the emission band-shape at RT depends on the excitation wavelength
- o the emission band-shape varies differently at F_0 with respect to $F_{\rm M}$
- o the value of F_V/F_M depends on both the excitation and emission wavelengths
- o the $F_{\rm V}$ spectra are excitation wavelength independent
- o this can be explained by a super-imposition of three emitters, PSI-PBS, PSII-PBS and an uncoupled PBS fraction (PBS_U)

As a result

- o F_V/F_M is generally underestimated and need to be corrected to obtain meaningful information
- o Similar bias in the fluorescence-based indicators affects also other parameters such as NPQ. It can leas to dramatic underestimation of this process.
- o In *green algae* the issue are less relevant. Distortion from actual values less than 10%

Thank You For the Attention!

Photosynthesis Research Unit

Anna Paola Casazza

Emiliano Grigis William Remelli Federico Rizzo

Collaborators:

